
Securi-Tay 2022
I'm In Your Pipes, Stealing Your Secrets

whoami
Iain Smart

Former Hacksoc/Securi-Tay bod

NCC Group Containerisation Practice Lead

2 / 49

Agenda
Brief intro into CI/CD

Demo of some attacks

War stories

Blue Team advice

3 / 49

Mild Disclaimer
The examples I'll refer to are skewed towards container-heavy findings

Minor details have been changed for client confidentiality etc.

4 / 49

CI/CD Overview

CI/CD Introduction
TL;DR - High levels of automation for testing and deployment

Allows developers to move faster, and work more centrally

Actions performed on central compute resources, against central codebase

(Theoretically) makes devs more efficient

6 / 49

CI - Continuous Integration
Perform testing against every push/pull request

Allows testing to be performed before code is merged

Helps with a "shift-left" mentality

More testing on smaller changes == faster feedback

7 / 49

CD - Continuous Delivery/Continuous Deployment
Once tests pass, deploy code to prod

Devs push once, code automagically ends up running

8 / 49

CI/CD - What's the tech?
Pipelines

Compute

Jenkins

Github Actions

Gitlab CI

Azure Devops/AWS CodeCommit/CodeDeploy

VMs

Containers

Serverless

9 / 49

CI/CD - An Attacker's View
Pipelines take code, run that code, and have privileged credentials

Possibly for multiple systems/build environments

10 / 49

Example Pipeline

Quick Example
Gitlab CI configured with a Kubernetes cluster providing compute resources

Actions run as Kubernetes pods (containers)

12 / 49

Quick Example - Architecture

13 / 49

test-job:
 stage: test
 script:
 - echo "Hello, world! I'm testing Gitlab CI"

Quick Example - Gitlab CI Snippet

14 / 49

Quick Example - Gitlab CI Snippet

15 / 49

Better Example - Deploy a Lambda

Reminder to self - Do the deploy

16 / 49

terraform-deploy:
 stage: deploy
 rules:
 - if: $CI_PROJECT_NAME != "cicddemotemplate"
 script:
 - cd terraform
 - terraform init -backend-config="key=$TF_VAR_PROJECT_PREFIX/terraform.tfstate"
 - terraform apply -auto-approve
 image: git.test.lab:5050/iain/cicddemotemplate/terraform:latest
 only:
 changes:
 - terraform/*
 - demo_function/*

Better Example - Deploy a Lambda

17 / 49

War Stories

Compromised Pipeline 1
Access to an internal git repo, using representative developer credentials

Codebase was an Apache Maven project

External dependencies specified from dev-controlled URL

Deployed through Jenkins runners

19 / 49

Compromised Pipeline 1
Generated a Meterpreter payload

Shell callback to attacker-controlled server

Shell was limited to the build environment

20 / 49

Compromised Pipeline 1
Recon phase: What's in the box?

cd ../../../../

Search for secrets

Find an SSH key

21 / 49

Compromised Pipeline 1
More recon

nmap local subnets

Find SSH servers

22 / 49

Compromised Pipeline 1
SSH to Jenkins master node

Dump all Jenkins variables

Find Kubernetes kubeconfig file

Compromise production Kubernetes cluster

23 / 49

Compromised Pipeline 2
Red Team engagement

Ended up with developer access

Modified a pipeline to run "printenv"

Service account credentials in the pipeline

24 / 49

Compromised Pipeline 3
Internal infrastructure review

Found a webapp with a SSRF vulnerability

Read Kubernetes serviceaccounttoken

25 / 49

Brief Aside - K8s Auth
By default, Kubernetes containers have authentication tokens in a predictable location

These tokens can be used to authenticate to the apiserver

Depending on RBAC, can get you various permissions

26 / 49

Aside to the aside - AWS EKS Auth
AWS EKS uses a Kubernetes configmap called aws-auth

Maps AWS Roles to Kubernetes roles

AWS Roles don't need to be in the same AWS account

27 / 49

Compromised Pipeline 3
SSRF granted access to edit configmaps

Added AWS role from a different account

Gained cluster admin over clusted

28 / 49

Compromised Pipeline 3
Application containing SSRF was mid-build in a pipeline

K8s cluster was providing compute

We had now compromised the build pipeline, but not the source repo or prod environment

kubectl get pods lists all env variables for pods

This includes git repository secrets

Found AWS IAM keys with access to ECR

29 / 49

Compromised Pipeline 3
Used AWS keys to overwrite ECR image

Production cluster used pull-based CI

New image was launched with access to various secrets in production cluster

Profit

30 / 49

Compromised Pipeline 4
Developers were not permitted access to production environments

Developers could make any changes they wanted in development

Merge requests to main branch required approval

Pipelines provided through CircleCI

Pipeline configured through a .circleci.yml file

Code used secrets as env variables, and used them based on the git branch being built

31 / 49

- name: Do Dev things
 image: registry.customer.com/terraform:v0.12
 environment:
 DEV_AWS_ACCESS_KEY_ID:
 from_secret: DEV_AWS_ACCESS_KEY_ID
 DEV_AWS_SECRET_ACCESS_KEY:
 from_secret: DEV_AWS_SECRET_ACCESS_KEY
 commands:
 - terraform apply
 when:
 branch:
 - feature/dev*

Compromised Pipeline 4

32 / 49

- name: Do Prod things
 image: registry.customer.com/terraform:v0.12
 environment:
 PROD_AWS_ACCESS_KEY_ID:
 from_secret: PROD_AWS_ACCESS_KEY_ID
 PROD_AWS_SECRET_ACCESS_KEY:
 from_secret: PROD_AWS_SECRET_ACCESS_KEY
 commands:
 - terraform apply
 when:
 branch:
 - main

Compromised Pipeline 4

33 / 49

Compromised Pipeline 4
Developers can change pipeline config file on non-main branches

Pipeline runs automatically on any branch

All secrets are available to all pipelines

34 / 49

- name: Do Hacky things
 image: registry.customer.com/terraform:v0.12
 environment:
 PROD_AWS_ACCESS_KEY_ID:
 from_secret: PROD_AWS_ACCESS_KEY_ID
 PROD_AWS_SECRET_ACCESS_KEY:
 from_secret: PROD_AWS_SECRET_ACCESS_KEY
 commands:
 - printenv
 when:
 branch:
 - *

Compromised Pipeline 4

35 / 49

Example Pipelines - Printenv

36 / 49

Example Pipelines - Kubectl

37 / 49

Common Themes

Common Themes - Network Segmentation
Components able to communicate around the network

Either on-prem networks or in the cloud

Access to cloud metadata (IMDS)

Access to cluster control planes

39 / 49

Component Breakout
Container breakouts due to lack of patching

Privileged containers/Docker in Docker

Same VM used for multiple projects

40 / 49

RBAC Misconfigurations
Cloud IAM roles

Kubernetes

41 / 49

Defending Pipelines

Firewalls
Limit egress to only required sites

Restrict access between build servers

43 / 49

Limited permissions
Review what RBAC permissions are assigned to each component

Determine and limit blast radius of a compromised component

Don't use privileged containers

44 / 49

Threat Model
Where can an attacker be?

What components can they tamper with?

What further access would that gain them?

45 / 49

Image Signing
Automated signing won't stop your pipeline being compromised

It just means you're signing someone's malware

46 / 49

Conclusion

Conclusion
Pipelines are privileged

Components should be isolated and locked down

Regular audits are important

48 / 49

Questions?
@smarticu5

Iain.Smart@nccgroup.com

49 / 49

